Решение дифференциальных уравнений Примеры решения типовых задач Курс практики по математике Инженерная графика Машиностроительное черчение История дизайна Архитектура ПК Лабораторные работы Курс лекций по физике теплоэнергетика
USB-накопитель на флеш-памяти Кэш центрального процессора Дисковая подсистема ПК Понятие архитектуры и структуры ЭВМ Внешние интерфейсы Жесткий магнитный диск Визуализация трехмерных изображений

Курс лекций по персональному компьютеру

Порты – это устройства для подключения к системной шине различных внешних устройств. Различают несколько типов портов: внутренний (таймерный), клавиатурный, коммуникационный, игровой (джойстик). Каждому порту выделяется группа адресов, по которым в порт записываются или из порта считываются данные, служебная информация для программирования параметров порта и текущее состояние порта.

Через таймерный порт можно программировать частоту следования меток времени, используемых в электронных часах компьютера. Сигналы порта подсчитываются операционной системой, для хранения накопленного значения используется область памяти с определенным адресом.

Клавиатурный порт обеспечивает ввод кодов нажатых клавиш. Данные от порта накапливаются и обрабатываются в специальном кольцевом буфере клавиатуры в определенной области памяти.

Коммуникационные порты обеспечивают подключение таких внешних устройств как мышь, принтер, сканер, внешний модем и некоторых других. Эти порты подразделяются на последовательные (СОМ1 и COM2) и параллельные (LPT).

Последовательные порты обеспечивают двусторонний побайтовый обмен последовательными кодами, выполнены в виде 25-контактного и 9-контактного разъемов. Порты размещаются в контроллере, который устанавливается либо на системной плате, либо на мультикарте и выведен на заднюю панель системного блока. Порты можно запрограммировать на требуемую скорость передачи данных. Используются обычно для подключения мыши и модема.

Параллельные порты могут реализовать либо однонаправленную побайтовую (8 электрических импульсов) передачу параллельных кодов, либо двунаправленную. Порты выполнены в виде 25-контактного разъема на задней стенке системного блока. Параллельный порт имеет более высокую скорость передачи информации, чем последовательные порты, и используется для подключения принтера.

Коммуникационные порты используются также для межкомпьютерной связи в режиме Link.

Широкое распространение получил порт USB (Universal Serial Bus – универсальная последовательная шина). Он обеспечивает высокоскоростное подключение к компьютеру сразу нескольких периферийных устройств (сканера, цифровых камер и т.п.).

Также высокоскоростное подключение до 7 устройств (винчестеров, сканеров, CD-ROM дисководов и т.п.) к компьютеру реализует интерфейс малых вычислительных систем (Small Computer System Interface). SCSI-адаптеры размещаются в слотах расширения системной платы.

Подключение джойстиков, предназначенных для управления играми, реализуется в специальный игровой порт (Game-порт), который размещается на звуковой карте.

 

Устройства вывода

Выводимая информация может отображаться на экране монитора, печататься на бумаге (с помощью принтера или плоттера), воспроизводиться в виде звуков (с помощью акустических колонок или головных телефонов), регистрироваться в виде тактильных ощущений (технология виртуальной реальности), распространяться в виде управляющих сигналов (устройства автоматики), передаваться в виде электрических сигналов по сети.

Мониторы

К средствам визуального отображения относятся мониторы.

Монитор работает под управлением специального аппаратного устройства – видеоадаптера, который преобразует информацию, предназначенную для вывода на экран, из внутреннего машинного представления в представление монитора. Видеокарта установлена в слот расширения системной платы в системном блоке, и с помощью нее монитор подключается к компьютеру.

Дисплей и адаптер очень тесно связаны между собой и совместно определяют качество изображения – разрешение, количество воспроизводимых цветов, скорость регенерации (число кадров в единицу времени).

Отображение информации на экране монитора возможно в одним из двух режимов: символьном или графическом. В любом режиме изображение на экране составляется из отдельных точек, каждая из которых имеет свой цвет или яркость. В графическом режиме, который в основном используется в современных программных продуктах, управление цветом или яркостью осуществляется для каждой точки экрана в отдельности. В текстовом режиме управление цветом или яркостью осуществляется сразу для группы точек, образующих прямоугольную матрицу определенного размера. Для этой группы задается цвет фона, то есть цвет точек, не участвующих в формировании символа, цвет символа и код символа. Формирование символа осуществляется под управлением специального электронного устройства – знакогенератора, представляющего для каждого символа кодовой таблицы набор байтов, определяющих местоположение в матрице точек с цветом символа и цветом фона. Изменение таблицы знакогенератора позволяет менять шрифт и создавать альтернативные таблицы кодировок символов.

В обязанности современной видеокарты входит быстрая и качественная обработка двумерной графики и поддержка (возможность вывода на экран качественно прорисованного) объемного, трехмерного изображения (3D, 3-Dimensions). Кроме того, у многих видеокарт есть и дополнительные функции – прием изображения внешнего источника – видеокамеры, видео-магнитофона или телевизионной антенны (эти операции выполняют, соответственно, видеовход и TV-тюнер), вывод изображения на внешние устройства – телевизор или видеомагнитофон (этим занимается видеовыход). Видеокарта оснащена достаточно мощным специализированным графическим процессором и собственной оперативной памятью (видеопамятью), объем которой постепенно догоняет стандартный объем оперативной памяти самого компьютера.

Бурное развитие графического пользовательского интерфейса операционных систем, прикладных и игровых программ явилось стимулом к появлению нового поколения видеоадаптеров, которые принято называть «графическими ускорителями». Это означает, что многие графические функции выполняются в самом видеоадаптере на аппаратном уровне, благодаря чему высвобождаются ресурсы процессора для выполнения других задач.

Основные параметры видеокарт.

1. Разрешающая способность – определенное количество точек графического изображения на единицу площади. Чем больше этих точек, тем менее зернистой и более качественной будет картинка. Разрешающую способность описывают две величины — количество точек по вертикали и по горизонтали: 640´480, 800´600, 1024´768, 1152´864, 1280´1024, 1600´1200, 1792´1344.

2. Цветовой режим – количество цветов. Любая современная видеокарта обеспечит количество цветов от 16 до нескольких десятков миллионов, достигая границы чувствительности человеческого глаза. Самый «грубый» режим – 16 цветов. LowColor – режим 256 цветов. High Color – режим «высококачественного цвета» (65 тыс. цветов). True Color – режим «реального цвета» (16 млн. цветов). Два последних режима являются «рабочими» для Windows, они же чаще всего используются в играх.

Эти два параметра вместе называются видеорежимом (режим 800´600´65K – разрешение 800´600 при 65 тыс. цветов).

3. Максимальная частота развертки (Refresh Rate) – частота обновления кадров. Чем выше частота развертки – тем меньше будет «рябить» экран монитора. Для комфортной работы необходимо, чтобы частота вертикальной развертки составляла не менее 80 Гц, т.е. чтобы изображе-ние на экране обновлялось с частотой не менее 80 раз в секунду.

Управление видеокартой в графическом режиме, в том числе включение того или иного графического режима, осуществляется с помощью специальной программы, называемой графическим драйвером. Стандартные драйверы имеют расширение bgi, например svga256.bgi.

В настоящее время наиболее распространены цветные мониторы с видеоадаптером SVGA (Super Video Graphic Array – видеографическая матрица). Монохромные мониторы в современных компьютерах не используются. Характеристиками монитора являются:

размер зерна люминофора (вещества, светящегося под воздействием пучка электронов);

размер экрана по диагонали.

Размер зерна – это минимальный размер пикселя, который может быть получен в данном мониторе. Минимальный элемент изображения на экране (точка) называется пикселем – от английского «picture element». Нельзя смешивать понятия «пиксель» и «зерно». Размер зерна изменить нельзя, а размер пикселя зависит от режима видеоадаптера. Для адаптеров с высоким разрешением нет смысла использовать монитор с крупным размером зерна. Приемлемым сегодня считается зерно 0,28 мм, качественные мониторы имеют зерно 0,25–0,24 мм, профессиональные – 0,22 мм. Величина зерна заметно сказывается на контрастности изображения. Поэтому для графических работ следует выбирать мониторы с зерном не более 0,25 мм.

Мониторы имеют различный размер экрана. Размер диагонали экрана измеряется в дюймах (1 дюйм = 2,54 см) и составляет 15,17, 19, 21 и более дюймов.

В настоящее время используются два вида мониторов: мониторы на электронно-лучевой трубке (ЭЛТ) и жидкокристаллические мониторы.

Параметры монитора ЭЛТ определяются характеристиками электронно-лучевой трубки и качеством элементов, управляющих видеотрактом.

Конструкция ЭЛТ совпадает с телевизионным кинескопом (рис. 2.11).

Перечислим основные детали, из которых состоит ЭЛТ: катод, анод, экран, колба модулятор, горизонтальные отклоняющие пластины, вертикальные отклоняющие пластины. Катод, анод и модулятор образуют электронный прожектор, который иногда называют электронной пушкой. Горизонтальные и вертикальные отклоняющие пластины образуют отклоняющую систему.

Фокусирующая

система

 

Отклоняющая система

 

Анод

 

Рис. 2.11. Принципиальное устройство электронно-лучевой трубки монитора

В ЭЛТ используется поток электронов, сфокусированных в узкий пучок, управляемый по интенсивности и по положению в пространстве. Электронный пучок испускается электронным прожектором (точнее, катодом), а изменение положения пучка на кране производится отклоняющей системой.

Перемещение электронного луча по экрану ЭЛТ в соответствии с определенным законом называется разверткой, а рисунок, прочерченный следом пучка на экране, – растром. Развертка осуществляется подачей на отклоняющую систему ЭЛТ периодически изменяющихся напряжений. В ходе развертки электронный пучок последовательно обегает по строчкам поверхность экрана ЭЛТ. В процессе сканирования поток электронов движется по зигзагообразной траектории от левого верхнего угла экрана к нижнему правому углу.

Экран покрыт люминофором, поэтому в местах падения электронного пучка появляется свечение, яркость которого пропорциональна интенсивности пучка. Интенсивность потока электронов изменяется в соответствии с сигналами, подаваемыми на управляющий электрод – модулятор. Именно эти сигналы формируют необходимое изображение на экране дисплея. С помощью отклоняющей системы модулированный пучок электронов развертывается в растр, высвечивая на экране строку за строкой. Изображение воспроизводится кадр за кадром. Благодаря инерционности зрения человек видит на экране слитное, динамическое, изображение. 

В цветных мониторах для формирования изображения применяют отдельные пушки для каждого из основных цветов (Red – красный, Green – зеленый, Blue – синий), а слой люминофора составляют из близко расположенных группами по три (также в сочетании Red, Green, Blue – RGB) точек цветного люминофора.

Мониторы на ЭЛТ (рис. 2.12) являются источником высокого статического напряжения, элек-тромагнитного излучения и мягкого рентгеновского излучения, которые оказывают неблагоприятное воздействие на пользователя. Наиболее интенсивны электромагнитные и другие излучения в области задней стенки корпуса монитора.

Экраны на плоских панелях могут быть основаны на нескольких технологиях:

жидких кристаллах (LCD);

плазменных (PDP);

светодиодных элементах (LED);

электронной эмиссии (FED)

и других.

Рис. 2.12. Внешний вид ЭЛТ-монитора

Жидкокристаллические мониторы (LCD – Liquid Crystal Display) имеют панели, ячейки (пикселы) которых содержат жидкие вещества, обладающие некоторыми свойствами, присущими кристаллам (рис. 2.13). Молекулы жидких кристаллов под воздействием электрического поля могут изменять свою ориентацию и вследствие этого изменять свойства светового луча, проходящего сквозь них.

Рис. 2.13. Внешний вид ЖК-монитора

ЖК-панель имеет несколько слоев, среди которых ключевую роль играют две стеклянные подложки и находящийся между ними слой жидких кристаллов. На подложках проделаны параллельные бороздки, определяющие ориентацию жидких кристаллов. Бороздки двух подложек перпендикулярны между собой. Молекулы жидких кристаллов в отсутствие напряжения под воздействием источника проходящего или падающего света поворачивают плоскость поляризации на угол 90°, что обеспечивает совпадение с ориентацией бороздок. При появлении электрического поля ЖК-молекулы выстраиваются вдоль поля, и угол поворота плоскости поляризации света становится отличным от 90°. Поворот плоскости поляризации светового луча незаметен для глаза, поэтому на панели устанавливают несколько поляризационных фильтров. Они пропускают только ту компоненту светового потока, у которой ось поляризации соответствует заданной. В отсутствие напряжения на сегменте углы поляризации света после прохождения ЖК-ячеек и второй подложки совпадают, и потому пиксел выглядит прозрачным.

Важнейшим параметром плоскопанельных дисплеев является стандартное (Native) разрешение. Оно соответствует числу пикселов по горизонтали и вертикали. Именно в стандартном разрешении ЖК-монитор воспроизводит изображение наиболее качественно. Разрешение определяется размером ячеек и диагональю панели. В настоящее время производятся панели с ячейками размером 0,24–0,3 мм.

Яркость и контрастность определяют комфортность работы с ЖК-монитором. Цветовой охват современных ЖК-панелей достигает 16,7 млн цветов. Таким образом, к преимуществам ЖК-мониторов можно отнести небольшое питающее напряжение, малую глубину панели, действительно плоское изображение (без геометрических искажений), высокие значения яркости, низкое энергопотребление, отсутствие электромагнитных излучений. Существенных недостатков четыре: высокая цена (которая динамично снижается), искажение цветов, единственный режим разрешения, обеспечивающий хорошее качество, малые углы комфортного обзора.

Мониторы, основанные на плазменных технологиях, светодиодных элементах и электронной эмиссии, пока используются редко.

Алгоритм вычислений представляется в виде последовательности управляющих слов, называемых командами. Команда определяет наименование операции и слова информации (данные), участвующие в операции. Алгоритм, представленный в терминах машинных команд, называется программой. Выполнение вычислений, предписанных алгоритмом, сводится к последовательному выполнению команд в порядке, однозначно определяемом программой.
Курс лекций по персональному компьютеру