Решение дифференциальных уравнений Примеры решения типовых задач Курс практики по математике Инженерная графика Машиностроительное черчение История дизайна Архитектура ПК Лабораторные работы Курс лекций по физике теплоэнергетика
USB-накопитель на флеш-памяти Кэш центрального процессора Дисковая подсистема ПК Понятие архитектуры и структуры ЭВМ Внешние интерфейсы Жесткий магнитный диск Визуализация трехмерных изображений

Курс лекций по персональному компьютеру

Основной цикл работы компьютера

Важной составной частью фон-неймановской архитектуры является счетчик адреса команд. Этот специальный внутренний регистр процессора всегда указывает на ячейку памяти, в которой хранится следующая команда программы. При включении питания или при нажатии на кнопку сброса (начальной установки) в счетчик аппаратно заносится стартовый адрес находящейся в постоянном запоминающем устройстве программы инициализации всех устройств и начальной загрузки. Дальнейшее функционирование компьютера определяется программой. Вся деятельность компьютера – это непрерывное выполнение тех или иных программ, причем программы могут в свою очередь загружать новые программы и т.д.

Каждая программа состоит из отдельных машинных команд. Каждая машинная команда, в свою очередь, делится на ряд элементарных унифицированных составных частей, которые принято называть тактами. В зависимости от сложности команды она может быть реализована за разное число тактов. Например, пересылка информации из одного внутреннего регистра процессора в другой выполняется за несколько тактов, а для перемножения двух целых чисел их требуется на порядок больше.

При выполнении каждой команды компьютер проделывает определенные стандартные действия:

согласно содержимому счетчика адреса команд считывается очередная команда программы (ее код обычно заносится на хранение в специальный регистр УУ, который носит название регистра команд);

счетчик команд автоматически изменяется так, чтобы в нем содержался адрес следующей команды (в простейшем случае для этой цели достаточно к текущему значению счетчика прибавить некоторую константу, определяющуюся длиной команды);

считанная в регистр команд операция расшифровывается, извлекаются необходимые данные и над ними выполняются требуемые действия.

Затем во всех случаях, за исключением команды останова или наступления прерывания, все описанные действия циклически повторяются.

 

Функциональные компоненты компьютера

Микропроцессор

В технической литературе используют два термина: процессор и микропроцессор. Различие указанных терминов заключается в уточнении технологии изготовления и габаритов процессора. Микропроцессор (МП) изготавливается по полупроводниковой технологии и размещается на одном кристалле, в одной микросхеме (иногда говорят – в одном чипе). Большая интегральная схема содержит сотни тысяч и миллионы активных элементов (транзисторов). Если 8-разрядный процессор Intel 8088, на котором работал первый IBM PC, содержал 3,5 тыс. транзисторов, то процессоры Pentium вмещают уже свыше 3 млн. транзисторов.

Микропроцессор (центральный микропроцессор, CPU) – программно управляемое устройство, предназначенное для обработки информации под управлением программы, находящейся в данный момент в оперативной памяти. Микросхема устанавливается на материнской плате и связана с материнской платой интерфейсом процессорного разъема (Socket).

Микропроцессор может обрабатывать данные любой природы: текст, числа, графику, звук и др. Это возможно потому, что данные перед использованием на компьютере преобразуются к простейшему виду, представляются в двоичном коде, «оцифровываются». Для описания работы цифровых устройств используется двоичная система счисления, Булева логика, законы алгебры логики.

Процессоры классифицируются по базовому типу, называющемуся семейством. С целью преемственности программного обеспечения последующие модели и модификации процессоров, как правило, содержат всю систему команд своих предшественников. Существует большое количество различных семейств процессоров, среди которых можно выделить семейство Intel и совместимых с ними AMD и Cyrix, на которых базируется значительная часть ПК. Фирмой Intel был создан процессор Pentium и его модификации Pentium Pro, Pentium II, Pentium III, Pentium IV. Процессоры фирмы Motorola, применяемые в компьютерах фирмы Apple, относятся к другому семейству.

Основными характеристиками процессора являются:

тактовая частота – количество тактов, производимых процессором за 1 секунду. Операции, производимые процессором, не являются непрерывными, они разделены на такты. Тактовая частота определяет скорость выполнения операций и непосредственно влияет на производительность процессора. Процессор Pentium и его модификации имеют тактовые частоты от 60 МГц до 3 ГГц (выполняют 3 миллиарда операций в секунду);

быстродействие – характеристика, связанная с тактовой частотой. Определяется количеством команд (операций), производимых в 1 секунду. Быстродействие зависит от тактовой частоты и от выполняющейся программы, от того, какие команды – сложения или, скажем, деления – в ней преобладают. Быстродействие определяется на специальных тестовых программах. Измеряется в бит/с.

 разрядность – количество двоичных разрядов, которые процессор обрабатывает за один такт. Чем больше количество одновременно обрабатываемых разрядов, тем выше вычислительная мощность компьютера. Указывая разрядность процессора 64, имеют в виду, что процессор имеет 64-разрядную шину данных, т.е. за один такт он обрабатывает 64 бита.

 

Шины

Комплекс, состоящий из пучка проводов и электронных схем, обеспечивающих правильную передачу информации внутри компьютера, называют магистралью, системной шиной или просто шиной. Шина характеризуется разрядностью и частотой.

Максимальное количество одновременно передаваемой информации называется разрядностью шины. Разрядность шины определяется разрядностью процессора и в настоящее время составляет 64 бита. Чем выше разрядность шины, тем больше информации она может предавать в единицу времени.

Поиск устройства или ячейки памяти осуществляет процессор. Каждое устройство или ячейка имеет свой адрес. Адрес передается по адресной шине, сигналы по которой передаются в одном направлении от процессора к оперативной памяти и устройствам. Разрядность адресной шины определяет адресное пространство процессора, т.е. количество ячеек памяти. Количество адресуемых ячеек памяти рассчитывается по формуле: N = 2i, где i – разрядность адресной шины. Если разрядность адресной шины составляет 32 бита, то максимально возможное количество адресуемых ячеек памяти равно 232 = 4 294 967 296 ячеек.

Информация по шине передается в виде импульсов электрического тока. Шина работает не непрерывно, а циклами. Количество циклов срабатывания шины в единицу времени называется частотой шины.

Шина связывает между собой не только процессор и оперативную память, фактически все устройства компьютера – диски, клавиатура, дисплей и т.д. – так или иначе принимают и передают данные через шину. Для этого в шине предусмотрены стандартные разъемы, к которым подключаются те или иные устройства компьютера. Если шина одна, то пропускная способность ввода\вывода ограничена. Скорость шины лимитируется физическими факторами – длиной шины и количеством подсоединяемых устройств. Поэтому в современных крупных системах используется комплекс взаимосвязанных шин. Традиционно шины делятся на шины, обеспечивающие организацию связи процессора с памятью и шины ввода\вывода.

Шины ввода\вывода могут иметь большую протяженность, поддерживать подсоединение многих типов устройств и обычно следуют одному из шинных стандартов. Шины процессор-память сравнительно короткие, высокоскоростные и соответствуют организации системы памяти для обеспечения максимальной пропускной способности канала память – процессор.

Некоторые компьютеры имеют единственную шину для памяти и устройств ввода\вывода. Такая шина называется системной. Локальной шиной называется шина, электрически выходящая непосредственно на контакты микропроцессора. Она обычно объединяет процессор, память, схемы буферизации для системной шины и ее контроллер, а также некоторые вспомогательные схемы.

Первоначально применялась шина ISA (8- и 16-разрядная, частота – 8 МГц), созданная в начале 80-х годов и обладавшая невысокой пропускной способностью. Сейчас шина ISA иногда используется для подключения низкоскоростных устройств (клавиатуры, мыши и т.д.).

В настоящее время чаще используются:

шина PCI (Peripheral Component Interconnect bus – шина взаимодействия периферийных устройств);

графическая шина AGP (Accelerated Craphic Port – ускоренный графический порт);

HyperTransport – высокоскоростная шина для соединения внутренних устройств компьютерной системы. Тактовая частота достигает 800 МГц. Пропускная способность составляет до 6,4 Гбайт/с;

USB предназначена для подключения до 256 внешних устройств (таких, как мышь, принтер, сканер, фотокамера, FM-тюнер и т.д.) к одному USB-каналу (по принципу общей шины). Пропускная способность до 480 Мбит/с (в версии USB 2.0).

В современных компьютерах частота процессора может превышать частоту системной шины (частота процессора 1 ГГц, а частота шины – 100 МГц).

Алгоритм вычислений представляется в виде последовательности управляющих слов, называемых командами. Команда определяет наименование операции и слова информации (данные), участвующие в операции. Алгоритм, представленный в терминах машинных команд, называется программой. Выполнение вычислений, предписанных алгоритмом, сводится к последовательному выполнению команд в порядке, однозначно определяемом программой.
Курс лекций по персональному компьютеру