Решение дифференциальных уравнений Примеры решения типовых задач Курс практики по математике Инженерная графика Машиностроительное черчение История дизайна Архитектура ПК Лабораторные работы Курс лекций по физике теплоэнергетика
Теория механизмов и машин Методы изготовления зубчатых колес Конические зубчатые передачи Трение в кинематических парах Коэффициент полезного действия (КПД) Повышение надежности машин

Теория машин и механизмов

Трение в кинематических парах

Природа и виды трения

При работе машин и механизмов происходит явление, которое сопровождается рассеиванием механической энергии. Это явление называется трением. Общее сопротивление, возникающее на поверхности двух соприкасающихся тел (рис. 53) при относительном скольжении их, называется силой трения. Еще Паран (1704) и Эйлер (1748) утверждали, что основной причиной трения скольжения является шероховатость тел, находящихся в соприкосновении. При сильном увеличении (изучая микроструктуру или микрогеометрию) соприкасающихся тел можно видеть картину соприкосновения двух шероховатых прижатых друг к другу поверхностей (рис. 53).

Рис. 53. Микрогеометрия двух соприкасающихся тел и возникновение силы трения при скольжении

При движении одного тела относительно другого в зонах фактического контакта происходит сцепление, возникают упругие, вязкие или пластические деформации соприкасающихся элементов, развиваются силы молекулярного взаимодействия. Появляющееся в результате этого суммарное сопротивление движению одного тела по другому и представляет собой силу трения. Такое объяснение физической картины трения дает механическая и молекулярная теория.

Таким образом, трение возникает вследствие механического зацепления и упругопластического контакта двух тел и, кроме того, молекулярного взаимодействия контактирующихся элементов. (Силы молекулярного притяжения можно ощутить, если две мерные плитки, находящиеся в соприкосновении хорошо обработанными поверхностями, сдвигать одну относительно другой.)

Общий механизм трения изучен еще недостаточно. В частности, не выявлена значимость отдельных факторов, определяющих силу трения.

Энергия, затрачиваемая на трение, превращается в теплоту. Одновременно с этим происходит сглаживание шероховатостей соприкасающихся поверхностей, называемое износом.

По объекту взаимодействия различают внешнее и внутреннее трение. Внешнее трение –– противодействие относительному перемещению соприкасающихся тел в направлении, лежащем в плоскости их соприкосновения. Внутреннее трение –– противодействие относительному перемещению отдельных частей одного и того же тела.

По признаку наличия или отсутствия относительного движения различают трение покоя и трение движения. Трение покоя (статическое трение) –– внешнее трение при относительном покое соприкасающихся тел. Трение движения (кинетическое трение) –– внешнее трение при относительном движении соприкасающихся тел.

По виду относительного движения тел различают: трение скольжения –– внешнее трение при относительном скольжении соприкасающихся тел, трение верчения –– внешнее трение при вращении одного тела относительно другого вокруг общей нормали к поверхностям их соприкосновения (частный случай трения скольжения), трение качения –– внешнее трение при относительном качении соприкасающихся тел.

По физическим признакам состояния взаимодействующих тел различают: чистое трение (ювенильное) –– внешнее трение при полном отсутствии на трущихся поверхностях каких-либо посторонних примесей; сухое трение (трение несмазанных поверхностей) –– внешнее трение, при котором трущиеся поверхности покрыты пленками окислов и адсорбированными молекулами газов или жидкостей, а смазка отсутствует; граничное трение –– внешнее трение, при котором между трущимися поверхностями есть тонкий (порядка 0,1 мкм и менее) слой смазки, обладающий свойствами, отличными от ее обычных объемных свойств; полужидкостное (смешанное) трение –– трение, при котором между трущимися поверхностями есть слой смазки с обычными объемными свойствами;  жидкостное (гидродинамическое) трение –– трение, при котором поверхности трущихся твердых тел полностью отделены друг от друга слоем жидкости.

Силой трения покоя называется составляющая полной реакции для трущихся тел, лежащая в общей касательной плоскости к поверхностям контакта. Величина этой силы и ее направление зависят от внешних сил, приложенных к трущимся телам, но не могут превышать предельной (полной) силы трения покоя, под которой понимается сила трения покоя, по достижении которой начинается относительное движение трущихся тел.

При жидкостном трении трущиеся поверхности должны быть полностью разделены слоем жидкости (смазки). В этом случае относительное скольжение поверхностей сопровождается только внутренним трением слоев жидкости, и величина силы трения оказывается значительно меньше, чем при сухом или граничном трении. Для того чтобы трение было жидкостным, необходимо в слое смазки создать такое давление, при котором результирующая сила давления смазки на каждый участок трущейся поверхности уравновешивала бы все другие силы, действующие на этот участок.

Трение во вращательной паре. Рассмотрим вращательную пару, в которую входят звенья i и j, при условии, что между цилиндрическими элементами этой пары имеется зазор. Тогда при сухом или граничном трении касание элементов пары происходит по линии, совпадающей с общей образующей цилиндрических элементов пары

Проекция абсолютного удлинения отрезка АВ на ось ОХ будет:

;

относительное удлинение этого ребра:

Рассуждая аналогично, получим:

 и .

Это формулы линейных деформаций.

Определим угол  поворота ребра АВ в плоскости XOY:

Поскольку  весьма мало по сравнению с 1, получим:

;

Аналогично получим угол поворота ребра АС = dy в плоскости XOY:

Определим угловую деформацию:

Запишем все уравнения вместе:

; ;

; ; (2.2)

;

Это уравнение Коши.

Контрольные вопросы

1. Как обозначают перемещения вдоль осей x, y, z?

2. Как связаны линейные деформации и перемещения? Напишите формулы.

3. Напишите формулы взаимосвязи угловых деформаций и перемещений.

Основные допущения в сопромате. Из-за сложности задачи расчета элементов конструкции в сопромате принимаются упрощающие допущения относительных свойств материала, нагрузок, характера взаимодействия детали и нагрузок. Материал тела имеет сплошное (непрерывное) строение. (Структура мелкозернистая: бетон, дерево, металл, камень, а размеры реальных деталей во много раз больше межатомных расстояний). Материал детали однороден, т.е. обладает во всех точках одинаковыми свойствами ( металл – более высокая однородность, чем у бетона – включения из камней, древесины – сучки - , пластмасс – свойства смол и наполнителей разные – тем не менее расчеты дают удовлетворительные результаты)


Расчет напряжений и перемещений при сложной деформации