Решение дифференциальных уравнений Примеры решения типовых задач Курс практики по математике Инженерная графика Машиностроительное черчение История дизайна Архитектура ПК Лабораторные работы Курс лекций по физике теплоэнергетика
Начертательная геометрия Виды проецирования Поверхсности вращения Метрические задачи Аксонометрические проекции Машинная графика Геометрические основы теории теней Прямоугольная изометрия

Начертательная геометрия примеры задач

Примеры позиционных и метрических задач на плоскость

Пример 1. В плоскости, заданной треугольником АВС, построить точку D (рис. 3.21).

Решение.

1. Необходимо в данной плоскости провести прямую. Зададим для этого две точки, заведомо лежащие в данной плоскости. Одной из таких точек может быть вершина А(А1;А2) треугольника. Вторую точку Е(Е1;Е2) зададим на стороне ВС. Через одноименные проекции А1 и Е1, А2 и Е2 проведем прямые. Эти прямые являются проекциями прямой. Лежащей в данной плоскости.

2. На построенной прямой АЕ зададим точку D. Для этого построим D1А1Е1 и D2А2Е2. Точка D лежит в заданной плоскости, т.к.к она принадлежит прямой АЕ, лежащей в этой плоскости Резьбовые соединения Общие сведения о резьбах. Широко применяемые резьбовые соединения осуществляются с помощью болтов, винтов, шпилек, стяжек, резьбовых муфт и т. п. Основным элементом резьбового соединения является винтовая пара.

Рис. 3.21

Пример 2. Построить линию наибольшего уклона плоскости, заданной параллельными прямыми а(а1; а2) и b(b1; b2) и определить угол  между этой плоскостью и горизонтальной плоскостью проекций (рис. 3.22)

Рис. 3.22

Решение

Проведем горизонталь h данной плоскости (см. гл.3 рис. 3.3, в). Проекциями этой горизонтали будут прямые h1 и h2.

Проведем прямую, перпендикулярную к горизонтальной проекции горизонтали, и отметим точки С1 - пересечения её с h1 D1 – са1. Прямая С1D1 является горизонтальной проекцией линии наибольшего ската.

Построим фронтальные проекции С2 и D2. Для этого из С1 и D1 проведем вертикальные линии связи до пересечения соответственно с h2 и а2.

Прямая, соединяющая точки С2 и D2, является фронтальной проекцией линии наибольшего уклона.

Угол  определяем из прямоугольного треугольника D1C1E0, построенного на С 1D1 как на катете. Второй катет D0D1 = E2D2. Искомый угол =D0C1D1

Пример 3. Задана плоскость пересекающимися прямыми АВ и CD. Определить лежит ли прямая KL в этой плоскости.

Рис. 3.23

Решение.

1. Обозначим точки пересечения фронтальных проекций прямых АВ и KL через 12 и прямых CD и KL через 22.

2. Строим их горизонтальные проекции – точки 11 и 22 на горизонтальной проекции (K1L1) прямой KL. Из построения видно, что точки 1(1112) и 2(2122) прямая KL на заданной плоскости не лежат. Следовательно, прямая KL в плоскости не лежит. Решение этой задачи можно начать и с пересечения горизонтальных проекций.

Однако не всякое изображение может быть использовано для решения технических задач. Для этого оно, в первую очередь, должно быть геометрически равноценно изображаемому объекту, то есть, построено по определённому геометрическому закону. Вопросами исследования геометрических основ построения изображений предметов на плоскости, вопросами решения пространственных геометрических задач при помощи изображений занимается одна из ветвей геометрии - НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ.
Построение аксонометрических изображений