Решение дифференциальных уравнений Примеры решения типовых задач Курс практики по математике Инженерная графика Машиностроительное черчение История дизайна Архитектура ПК Лабораторные работы Курс лекций по физике теплоэнергетика
Расчет трехопорной рамы Расчет стержневой системы по предельному состоянию Расчет трехопорных рам Задания на выполнение курсовых работ по сопротивлению материалов Техническая механика Балочные системы

Курсовые по сопромату

Балочные системы.

Определение реакций опор и моментов защемления

Иметь представление о видах опор и возникающих реакциях в опорах.

Знать три формы уравнений равновесия и уметь их использовать для определения реакций в опорах балочных систем.

Уметь выполнять проверку правильности решения.

Виды нагрузок и разновидности опор

Виды нагрузок Изгиб с кручением Это такой случай нагружения, когда в ПС возникают изгибающие и крутящий моменты. Такое нагружение характерно для валов. Особенностью изгиба с кручением является необходимость применения одной из теории прочности для проведения расчетов на прочность.

По способу приложения нагрузки делятся на сосредоточенные и распределенные. Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосредоточенной.

Часто нагрузка распределена по значительной площадке или линии (давление воды на плотину, давление снега на крышу и т.п.), тогда нагрузку считают распределенной.

В задачах статики для абсолютно твердых тел распределенную нагрузку можно заменить равнодействующей сосредоточенной силой (рис. 6.1).

Рис.

где q — интенсивность нагрузки; / — длина стержня;

G = ql — равнодействующая распределенной нагрузки.

Разновидности опор балочных систем

Балка — конструктивная деталь в виде прямого бруса, закрепленная на опорах и изгибаемая приложенными к ней силами.

Высота сечения балки незначительна по сравнению с длиной. Жесткая заделка (защемление) (рис. 6.2)

Опора не допускает перемещений и поворотов. Заделку заменяют двумя составляющими силы RAx и RAy и парой с моментом MR.

Для определения этих неизвестных удобно использовать систему уравнений в виде

  

Каждое уравнение имеет одну неизвестную величину и решается без подстановок.

Для контроля правильности решений используют дополнительное уравнение моментов относительно любой точки на балке, например В:


Рис.

Рис.


Шарнирно-подвижная опора (рис. 6.3)

Опора допускает поворот вокруг шарнира и перемещение вдоль опорной поверхности. Реакция направлена перпендикулярно опорной поверхности.

Шарнирно-неподвижная опора (рис. 6.4)

Опора допускает поворот вокруг шарнира и может быть заменена двумя составляющими силы вдоль осей координат.


Рис.

 Рис.


Не известны три силы, две из них — вертикальные, следовательно, удобнее для определения неизвестных использовать систему уравнений во второй формуле:

  

Составляются уравнения моментов относительно точек крепления балки. Поскольку момент силы, проходящей через точку крепления, равен 0, в уравнении останется одна неизвестная сила.

Из уравнения  определяется реакция RBx.

Из уравнения  определяется реакция RBy.

Из уравнения  определяется реакция RAy.

Для контроля правильности решения используется дополнительное уравнение

При равновесии твердого тела, где можно выбрать три точки, не лежащие на одной прямой, удобно использовать систему уравнений в третьей форме (рис. 6.6):

Рис.

{


Контрольные вопросы и задания

1. Замените распределенную нагрузку сосредоточенной и определите расстояние от точки приложения равнодействующей до опоры А (рис. 6.9).

Рис.

2. Рассчитайте величину суммарного момента сил системы относительно точки А (рис. 6.10).

Рис.

3. Какую из форм уравнений равновесия целесообразно использовать при определение реакций в заделке?

4. Какую форму системы уравнений равновесия целесообразно использовать при определении реакций в опорах двухопорной балки и почему?

5. Определить реактивный момент в заделке одноопорной балки, изображенной на схеме (рис. 6.11).

Рис.

6. Определите вертикальную реакцию в заделке для балки, представленной на рис. 6.11.

Пространственная система сил Знать момент силы относительно оси, свойства момента, аналитический способ определения равнодействующей, условия равновесия пространственной системы сил. Уметь выполнять разложение силы на три взаимно перпендикулярные оси, определять момент силы относительно оси.

Основные понятия кинематики. Кинематика точки Иметь представление о пространстве, времени, траектории, пути, скорости и ускорении. Знать способы задания движения точки (естественный и координатный).

Простейшие движения твердого тела Иметь представление о поступательном движении, его особенностях и параметрах, о вращательном движении тела и его параметрах. Знать формулы для определения параметров поступательного ш вращательного движений тела.

Понятие о трении. Виды трения Трение — сопротивление, возникающее при движении одного шероховатого тела по поверхности другого. При скольжении тел возникает трение скольжения, при качении — трение качения. Природа сопротивлений движению в разных случаях различна.

Работа и мощность Иметь представление о работе силы при прямолинейном и криволинейном перемещениях, о мощности полезной и затраченной, о коэффициенте полезного действия. Знать зависимости для определения силы трения, формулы для расчета работы и moi юности при поступательном и вращательном движениях.

Кулачковые механизмы

Кулачковым механизмом называется механизм, в состав которго входит кулачок (звено, рабочая поверхность которого имеет переменную кривизну) (рис. 42).

Рис. 42

Классификация кулачковых механизмов

1. В зависимости от вида относительного движения звеньев:

а) плоские (кулачок и толкатель перемещаются в параллельных плоскостях) (рис. 42а);

б) пространственные (кулачок и толкатель перемещаются в непараллельных плоскостях) (рис. 42б).

2. По видам движения кулачка:

а) с поступательно движущимися кулачками (рис. 43а);

б) с вращающимися кулачками (рис. 42а);

в) с качающимися кулачками (рис. 43б).

Рис. 43

Механизм усталостного разрушения во многом связан с неоднородностью реальной структуры материалов (различие размеров, очертаний, ориентации соседних зерен металла; наличие различных включений – шлаков, примесей; дефекты кристаллической решетки, дефекты поверхности материала – царапины, коррозия и т. д.). В связи с указанной неоднородностью при переменных напряжениях на границах отдельных включений и вблизи микроскопических пустот и различных дефектов возникает концентрация напряжений, которая приводит к микропластическим деформациям сдвига некоторых зерен металла (при этом на поверхности зерен могут появляться полосы скольжения) и накоплению сдвигов (которое на некоторых материалах проявляется в виде микроскопических бугорков и впадинок – экструзий и интрузий); затем происходит развитие сдвигов в микротрещины, их рост и слияние; на последнем этапе появляется одна или несколько макротрещин, которая достаточно интенсивно развивается (растет). Края трещины под действием переменной нагрузки притираются друг об друга, и поэтому зона роста трещины отличается гладкой (полированной) поверхностью. По мере роста трещины поперечное сечение детали все больше ослабляется, и, наконец, происходит внезапное хрупкое разрушение детали, при этом зона хрупкого долома имеет грубозернистую кристаллическую структуру (как при хрупком разрушении).
Курсовые по сопромату