Решение дифференциальных уравнений Примеры решения типовых задач Курс практики по математике Инженерная графика Машиностроительное черчение История дизайна Архитектура ПК Лабораторные работы Курс лекций по физике теплоэнергетика
Решение дифференциальных уравнений Использование метода Фурье Примеры решения задач Приближенный метод интегрирования систем Примеры решения типовых задач Контрольная работа Линейная алгебра

Курс лекций по математике Примеры решения типовых задач

Уравнение плоскости

Пусть в декартовой системе координат имеется некоторая плоскость, проходящая через точку , ее радиус-вектор будет иметь координаты . Зададим на этой же плоскости точку  с радиус-вектором . Очевидно, что вектор  также будет находиться в заданной плоскости (Рис. 2.6).

Рис. 2.6. Вектор  на плоскости Практикум по теме «Двойной интеграл»

Проведем перпендикуляр к плоскости . Скалярное произведение вектора  с эти перпендикуляром будет равно 0: , или, в координатах:

.

( 2.1 )

Преобразуем данное уравнение: раскроем скобки и сгруппируем известные координаты: , обозначив , получим уравнение плоскости в общей форме:

,

( 2.2 )

где  – координаты любой точки на плоскости;  – координаты фиксированной точки на плоскости;  – координаты нормали к плоскости. Если все коэффициенты общего уравнения не равны нулю, то уравнение ( 2.2 ) можно привести к виду:

.

( 2.3 )

Уравнение плоскости в данном виде называется уравнением плоскости в отрезках; в уравнении приняты обозначения: , , ; отрезки  отсекаются плоскостью на осях координат.

Итак, плоскость в пространстве, как и прямая на плоскости, задается уравнением первой степени относительно координат. Поэтому говорят, что плоскость есть поверхность первого порядка.

Расстояние от точки  до поверхности, заданной формулой ( 2.3 ) определяется по формуле:

,

( 2.4 )

Двугранный угол между плоскостями  и  совпадает с углом между их нормалями и вычисляется по формуле:

,

( 2.5 )

Для ортогональных плоскостей будет справедливо утверждение:  или в координатной форме: .

Для параллельных плоскостей выполняется условие пропорциональности координат нормалей: . В частности, если, кроме того, выполняется условие , то плоскости совпадают.

Рассмотрим частные случаи расположения плоскости в декартовой системе координат.

1. : нормаль к плоскости параллельна оси . Поскольку  для нормали  имеем  и уравнение ( 2.5 ) принимает вид: . В этом случае плоскость параллельна координатной оси .

2. : проводя аналогичные рассуждения, получаем: , плоскость параллельная оси .

3. : , плоскость параллельная оси .

4. : вектор нормали лежит в плоскости , следовательно, плоскость параллельна оси . В этом случае , так как .

5. , параллельна оси .

6. , параллельна оси .

7. : это возможно лишь в случае, когда плоскость проходит через начало координат. При этом  и плоскость задается уравнением , которому удовлетворяет точка .

Аксиоматический метод построения научной теории. "Начала" Евклида - образец аксиоматического построения научной теории. История создания неевклидовой геометрии. В настоящее время недоказуемость пятого постулата является строго доказанным математическим фактом. Три великих математика в 19 веке почти одновременно, независимо друг от друга пришли к одним результатам - недоказуемости пятого постулата и к созданию неевклидовой геометрии. Николай Иванович Лобачевский (1792-1856) Карл Фридрих Гаусс (1777-1855) Янош Бойяй (1802-1860)
Решение систем линейных уравнений