Найти частные производные функций Найти локальные экстремумы функции Криволинейные интегралы Система координат Найти предел Комплексные числа Производная по направлению

Курсовая по математике. Примеры решения задач Курсовая по математике. Примеры решения задач

Производные и дифференциалы функций нескольких переменных

  Определение. Пусть в некоторой области задана функция z = f(x, y). Возьмем произвольную точку М(х, у) и зададим приращение Dх к переменной х. Тогда величина Dxz = f( x + Dx, y) – f(x, y) называется частным приращением функции по х.

Можно записать

.

 Тогда  называется частной производной функции z = f(x, y) по х. Интегрирование. Образец решения типового расчёта № 4. Задание 1. Найти неопределённые интегралы:

Обозначение:

 Аналогично определяется частная производная функции по у.

 Геометрическим смыслом частной производной (допустим ) является тангенс угла наклона касательной, проведенной в точке N0(x0, y0, z0) к сечению поверхности плоскостью у = у0.

Полное приращение и полный дифференциал

 Определение. Для функции f(x, y) выражение Dz = f( x + Dx, y + Dy) – f(x, y) называется полным приращением.

  Если функция f(x, y) имеет непрерывные частные производные, то

 

Применим теорему Лагранжа к выражениям, стоящим в квадратных скобках.

здесь

 Тогда получаем

Т.к. частные производные непрерывны, то можно записать равенства:

 Определение. Выражение  называется полным приращением функции f(x, y) в некоторой точке (х, у), где a1 и a2 – бесконечно малые функции при Dх ® 0 и Dу ® 0 соответственно.

 Определение: Полным дифференциалом функции z = f(x, y) называется главная линейная относительно Dх и Dу приращения функции Dz в точке (х, у).

 Для функции произвольного числа переменных:

 Пример. Найти полный дифференциал функции .

 Пример. Найти полный дифференциал функции

Геометрический смысл полного дифференциала

Касательная плоскость и нормаль к поверхности

 касательная плоскость

 Пусть N и N0 – точки данной поверхности. Проведем прямую NN0. Плоскость, которая проходит через точку N0, называется касательной плоскостью к поверхности, если угол между секущей NN0 и этой плоскостью стремится к нулю, когда стремится к нулю расстояние NN0.

  Определение. Нормалью к поверхности в точке N0 называется прямая, проходящая через точку N0 перпендикулярно касательной плоскости к этой поверхности.

 В какой – либо точке поверхность имеет, либо только одну касательную плоскость, либо не имеет ее вовсе.

 Если поверхность задана уравнением z = f(x, y), где f(x, y) – функция, дифференцируемая в точке М0(х0, у0), касательная плоскость в точке N0(x0,y0,(x0,y0)) существует и имеет уравнение:

.

 Уравнение нормали к поверхности в этой точке:

 Геометрическим смыслом полного дифференциала функции двух переменных f(x, y) в точке (х0, у0) является приращение аппликаты (координаты z) касательной плоскости к поверхности при переходе от точки (х0, у0) к точке (х0+Dх, у0+Dу).

 Как видно, геометрический смысл полного дифференциала функции двух переменных является пространственным аналогом геометрического смысла дифференциала функции одной переменной.


На главную