Начертательная
Математика
Лабораторные
Электротехника
Конструирование
Примеры
Физика
Электрические сети

Инженерная графика

Курсовая
ТОЭ
Энергетика
Черчение
Практика
Расчеты
На главную

Курсовая по математике. Примеры решения задач Курсовая по математике. Примеры решения задач

Пример. Найти предел

Так как tg5x ~ 5x и sin7x ~ 7x при х ® 0, то, заменив функции эквивалентными бесконечно малыми, получим:

 Пример. Найти предел .

Так как 1 – cosx =  при х®0, то .

  Пример. Найти предел

 Если a и b - бесконечно малые при х®а, причем b - бесконечно малая более высокого порядка, чем a, то g = a + b - бесконечно малая, эквивалентная a. Это можно доказать следующим равенством .

 Тогда говорят, что a - главная часть бесконечно малой функции g.

 Пример. Функция х2 +х – бесконечно малая при х®0, х – главная часть этой функции. Чтобы показать это, запишем a = х2, b = х, тогда

Некоторые замечательные пределы

, где P(x) = a0xn + a1xn-1 +…+an, 

Q(x) = b0xm + b1xm-1 +…+bm - многочлены.

Итого:

Первый замечательный предел 

Второй замечательный предел 

 Часто если непосредственное нахождение предела какой – либо функции представляется сложным, то можно путем преобразования функции свести задачу к нахождению замечательных пределов.

 Кроме трех, изложенных выше, пределов можно записать следующие полезные на практике соотношения:

 Пример. Найти предел.

Пример. Найти предел.

 Пример. Найти предел.

 Пример. Найти предел.

 

 Пример. Найти предел.

 Пример. Найти предел .

 Для нахождения этого предела разложим на множители числитель и знаменатель данной дроби.

x2 – 6x + 8 = 0; x2 – 8x + 12 = 0;

D = 36 – 32 = 4; D = 64 – 48 = 16;

x1 = (6 + 2)/2 = 4; x1 = (8 + 4)/2 = 6;

x2 = (6 – 2)/2 = 2 ; x2 = (8 – 4)/2 = 2;

Тогда

 Пример. Найти предел.

 домножим числитель и знаменатель дроби на сопряженное выражение: =

=.

 

Пример. Найти предел.

 Пример. Найти предел .

 Разложим числитель и знаменатель на множители.

x2 – 3x + 2 = (x – 1)(x – 2)

x3 – 6x2 + 11x – 6 = (x – 1)(x – 2)(x – 3), т.к.

x3 – 6x2 + 11x – 6 x - 1

 x3 – x2 x2 – 5x + 6

 - 5x2 + 11x

 - 5x2 + 5x

 6x - 6

 6x - 6 0

x2 – 5x + 6 = (x – 2)(x – 3)

Тогда

 Пример. Найти предел.

 - не определен, т.к. при стремлении х к 2 имеют место различные односторонние пределы -∞ и +∞.


Теплоэнергетика

Физика