Начертательная
Математика
Лабораторные
Электротехника
Конструирование
Примеры
Физика
Электрические сети

Инженерная графика

Курсовая
ТОЭ
Энергетика
Черчение
Практика
Расчеты
На главную

Курсовая по математике. Примеры решения задач Курсовая по математике. Примеры решения задач

Пример. Задано линейное преобразование А, переводящее вектор в вектор   и линейное преобразование В, переводящее вектор  в вектор . Найти матрицу линейного преобразования, переводящего вектор  в вектор .

С = В×А

Т.е.

 Примечание: Если ïАï= 0, то преобразование вырожденное, т.е., например, плоскость преобразуется не в целую плоскость, а в прямую.

Собственные значения и собственные векторы

линейного преобразования

 

  Определение: Пусть L – заданное n- мерное линейное пространство. Ненулевой вектор L называется собственным вектором линейного преобразования А, если существует такое число l, что выполняется равенство:

A.

При этом число l называется собственным значением (характеристическим числом) линейного преобразования А, соответствующего вектору .

Определение: Если линейное преобразование А в некотором базисе ,,…, имеет матрицу А = , то собственные значения линейного преобразования А можно найти как корни l1, l2, … ,ln уравнения:

 Это уравнение называется характеристическим уравнением, а его левая часть- характеристическим многочленом линейного преобразования А.

Пример. Найти характеристические числа и собственные векторы линейного преобразования с матрицей А = .

Запишем линейное преобразование в виде:

Составим характеристическое уравнение:

l2 - 8l + 7 = 0;

Корни характеристического уравнения: l1 = 7; l2 = 1;

  Для корня l1 = 7:

Из системы получается зависимость: x1 – 2x2 = 0. Собственные векторы для первого корня характеристического уравнения имеют координаты: (t; 0,5t) где t- параметр.

  Для корня l2 = 1:

Из системы получается зависимость: x1 + x2 = 0. Собственные векторы для второго корня характеристического уравнения имеют координаты: (t; -t) где t- параметр.

  Полученные собственные векторы можно записать в виде:

Пример. Найти характеристические числа и собственные векторы линейного преобразования А, матрица линейного преобразования А = .

 Составим характеристическое уравнение:

(1 - l)((5 - l)(1 - l) - 1) - (1 - l - 3) + 3(1 - 15 + 3l) = 0

(1 - l)(5 - 5l - l + l2 - 1) + 2 + l - 42 + 9l = 0

(1 - l)(4 - 6l + l2) + 10l - 40 = 0

4 - 6l + l2 - 4l + 6l2 - l3 + 10l - 40 = 0

-l3 + 7l2 – 36 = 0

-l3 + 9l2 - 2l2 – 36 = 0

-l2(l + 2) + 9(l2 – 4) = 0

(l + 2)(-l2 + 9l - 18) = 0

Собственные значения: l1 = -2; l2 = 3; l3 = 6;

1) Для l1 = -2: 

Если принять х1 = 1, то Þ х2 = 0;  x3 = -1;

Собственные векторы: 

2) Для l2 = 3: 

Если принять х1 = 1, то Þ х2 = -1;  x3 = 1;

Собственные векторы: 

3) Для l3 = 6: 

Если принять х1 = 1, то Þ х2 = 2;  x3 = 1;

Собственные векторы: 

Введение в математический анализ 

Предел функции в точке

 y f(x)

 

 A + e

 A

 A - e

 0 a - D a a + D  x

 Пусть функция f(x) определена в некоторой окрестности точки х = а (т.е. в самой точке х = а функция может быть и не определена)

 Определение. Число А называется пределом функции f(x) при х®а, если для любого e>0 существует такое число D>0, что для всех х таких, что

0 < ïx - aï < D

верно неравенство ïf(x) - Aï< e.

 То же определение может быть записано в другом виде:

Если а - D < x < a + D, x ¹ a, то верно неравенство А - e < f(x) < A + e.

Запись предела функции в точке:

Предел функции при стремлении аргумента к бесконечности

 Определение. Число А называется пределом функции f(x) при х®¥, если для любого числа e>0 существует такое число М>0, что для всех х, ïхï>M выполняется неравенство

При этом предполагается, что функция f(x) определена в окрестности бесконечности.

Записывают:  

 

Аналогично можно определить пределы  для любого х>M и

 для любого х<M.

Основные теоремы о пределах

  Теорема 1. , где С = const.

 Следующие теоремы справедливы при предположении, что функции f(x) и g(x) имеют конечные пределы при х®а.

  Теорема 2.

Доказательство этой теоремы будет приведено ниже.

  Теорема 3.

 Следствие.

 Теорема 4.  при

 Теорема 5. Если f(x)>0 вблизи точки х = а и , то А>0.

Аналогично определяется знак предела при f(x) < 0, f(x) ³ 0, f(x) £ 0.

 Теорема 6. Если g(x) £ f(x) £ u(x) вблизи точки х = а и , то и .


Теплоэнергетика

Физика