Найти частные производные функций Найти локальные экстремумы функции Криволинейные интегралы Система координат Найти предел Комплексные числа Производная по направлению

Курсовая по математике. Примеры решения задач Курсовая по математике. Примеры решения задач

Пример. Решить систему линейных уравнений методом Гаусса.

Составим расширенную матрицу системы.

А* =

Таким образом, исходная система может быть представлена в виде:

, откуда получаем: x3 = 2; x2 = 5; x1 = 1.

 Пример. Решить систему методом Гаусса.

Составим расширенную матрицу системы.

Таким образом, исходная система может быть представлена в виде:

, откуда получаем: z = 3; y = 2; x = 1.

 Полученный ответ совпадает с ответом, полученным для данной системы методом Крамера и матричным методом.

Элементы векторной алгебры

 Определение. Вектором называется направленный отрезок (упорядоченная пара точек). К векторам относится также и нулевой вектор, начало и конец которого совпадают.

 Определение. Длиной (модулем) вектора называется расстояние между началом и концом вектора.

 Определение . Векторы называются коллинеарными, если они расположены на одной или параллельных прямых. Нулевой вектор коллинеарен любому вектору.

 Определение. Векторы называются компланарными, если существует плоскость, которой они параллельны.

 Коллинеарные векторы всегда компланарны, но не все компланарные векторы коллинеарны.

 Определение. Векторы называются равными, если они коллинеарны, одинаково направлены и имеют одинаковые модули.

  Всякие векторы можно привести к общему началу, т.е. построить векторы, соответственно равные данным и имеющие общее начало. Из определения равенства векторов следует, что любой вектор имеет бесконечно много векторов, равных ему.

 Определение. Линейными операциями над векторами называется сложение и умножение на число.

  Суммой векторов является вектор -

 Произведение - , при этом  коллинеарен .

Вектор  сонаправлен с вектором ( ­­), если a > 0.

Вектор  противоположно направлен с вектором (­¯), если a < 0.

Свойства векторов

  1)  + = +  - коммутативность.

 2)  + (+ ) = ( + )+

 3)  +  =  

 4)  +(-1) =

 5) (a×b) = a(b) – ассоциативность

  6) (a+b) = a + b - дистрибутивность

 7) a( + ) = a + a

 8) 1× =  

Определение.

1) Базисом в пространстве называются любые 3 некомпланарных вектора, взятые в определенном порядке.

2) Базисом на плоскости называются любые 2 неколлинеарные векторы, взятые в определенном порядке.

3)Базисом на прямой называется любой ненулевой вектор.

 Определение. Если  - базис в пространстве и  , то числа a, b и g - называются компонентами или координатами вектора  в этом базисе.

В связи с этим можно записать следующие свойства:

равные векторы имеют одинаковые координаты,

при умножении вектора на число его компоненты тоже умножаются на это число,

= .

при сложении векторов складываются их соответствующие компоненты.

;

 + = .

 

Линейная зависимость векторов

  Определение. Векторы  называются линейно зависимыми, если существует такая линейная комбинация , при не равных нулю одновременно ai , т.е. .

Если же только при ai = 0 выполняется , то векторы называются линейно независимыми.

 Свойство 1. Если среди векторов  есть нулевой вектор, то эти векторы линейно зависимы.

 Свойство 2. Если к системе линейно зависимых векторов добавить один или несколько векторов, то полученная система тоже будет линейно зависима.

  Свойство 3. Система векторов линейно зависима тогда и только тогда, когда один из векторов раскладывается в линейную комбинацию остальных векторов.

 Свойство 4. Любые 2 коллинеарных вектора линейно зависимы и, наоборот, любые 2 линейно зависимые векторы коллинеарны.

 Свойство 5. Любые 3 компланарных вектора линейно зависимы и, наоборот, любые 3 линейно зависимые векторы компланарны.

  Свойство 6. Любые 4 вектора линейно зависимы.


На главную